Anglais

Question

Given the region enclosed by the parabola y = x² and the line y = m(x – 1) + 2, which passes through (1 ; 2). Find the value of m that gives the minimum value of the area, S, of the enclosed region.
Given the region enclosed by the parabola y = x² and the line y = m(x – 1) + 2, which passes through (1 ; 2). Find the value of m that gives the minimum value o
Given the region enclosed by the parabola y = x² and the line y = m(x – 1) + 2, which passes through (1 ; 2). Find the value of m that gives the minimum value o

1 Réponse

  • f(x)= x² - m(x-1)   - 2  

    F(x)  = x^3/3   - m(x^ /2   -x)   -  2x 

    area =  F(b)  -  F(a)     where  a et  b   are solutions  of   f(x)= 0

    so    a² = m(a-1)  +  2     b²=m(b-1)  +2
    a^3 =  m(a²  -a)  +2a  =  m[   m(a-1)  +2   -a]  +  2a  =m²(a-1)+m(2-a)+2a
    F(a)= m²(a-1)+m(2-a)+2a  -m( m/2(a-1)  +1  - a)   - 2a =
    m²( (a-1)/2  )  +  m(2-a  - 1+a)    =  m²(a-1)/2  +  m
    F(b)=  m²(b-1)/2  +  m
    F(b)  -  F(a)=  m²/2( b - a) 
    or   a²  -am   + m -2 = 0 
    delta = m² - 4(m-2)  = m² -4m  +  8
    a=  [  m  -  rac(delta) ]  /2       b = [ m + rac(delta) ] /2 
    b-a = rac(delta)      area = m²/2 * rac(m² -4m +8) 
    area= g(m) =  m²/2 *   rac(m² -4m +8)  
    minimum  area is for  m = 0