Given the region enclosed by the parabola y = x² and the line y = m(x – 1) + 2, which passes through (1 ; 2). Find the value of m that gives the minimum value o
Anglais
aliceto
Question
Given the region enclosed by the parabola y = x² and the line y = m(x – 1) + 2, which passes through (1 ; 2). Find the value of m that gives the minimum value of the area, S, of the enclosed region.
1 Réponse
-
1. Réponse laurance
f(x)= x² - m(x-1) - 2
F(x) = x^3/3 - m(x^ /2 -x) - 2x
area = F(b) - F(a) where a et b are solutions of f(x)= 0
so a² = m(a-1) + 2 b²=m(b-1) +2
a^3 = m(a² -a) +2a = m[ m(a-1) +2 -a] + 2a =m²(a-1)+m(2-a)+2a
F(a)= m²(a-1)+m(2-a)+2a -m( m/2(a-1) +1 - a) - 2a =
m²( (a-1)/2 ) + m(2-a - 1+a) = m²(a-1)/2 + m
F(b)= m²(b-1)/2 + m
F(b) - F(a)= m²/2( b - a)
or a² -am + m -2 = 0
delta = m² - 4(m-2) = m² -4m + 8
a= [ m - rac(delta) ] /2 b = [ m + rac(delta) ] /2
b-a = rac(delta) area = m²/2 * rac(m² -4m +8)
area= g(m) = m²/2 * rac(m² -4m +8)
minimum area is for m = 0