Mathématiques

Question

Bonsoir
Vous pouvez m'aider SVP

On considère l'expression K :
K= (n+1)² - (n-1)²
1) Développer, puis réduire l'expression K.
2) Retrouver le résultat de la question 1) en factorisant l'expression K.

2 Réponse

  • 1) K = (n + 1)² - (n - 1)²
    K = (n² + 2 * n * 1 + 1²) - (n² - 2 * n * 1 + 1²)
    K = n² + 2n + 1 - (n² - 2n + 1)
    K = n² + 2n + 1 - n² + 2n - 1
    K = 4n

    2) K = (n + 1)² - (n - 1)²
    K = (n + 1 + n - 1) (n + 1 - n + 1)
    K = 2n * 2
    K = 4n
  • K= (n+1)² - (n-1)²
    1) Développer, puis réduire l'expression K.
    K=n²+2n+1-(n²-2n+1)
    K=2n+2n
    K=4n

    2) Retrouver le résultat de la question 1) en factorisant l'expression K.
    K=(n+1+n-1)(n+1-n+1)
    K=(2n)*2
    k=4n

Autres questions