Mathématiques

Question

Bonjour j ai vraiment besoin d aide pour la partie 1 et 2 merci

Bonne Journée
Bonjour j ai vraiment besoin d aide pour la partie 1 et 2 merci Bonne Journée
Bonjour j ai vraiment besoin d aide pour la partie 1 et 2 merci Bonne Journée

2 Réponse

  •  
    partie A)

    1) 20=1, 
    21=2, 
    22=4, 
    23=8, 
    24=16
    2) écriture binaire des chiffres 0 à 9 : 

    0= 0x23+0x22+0x21+0x20 
    1 = 0x23+0x22+0x21+1x20 
    2 = 0x23+0x22+1x21+0x20 
    3 = 0x23+0x22+1x21+1x20 
    4 = 0x23+1x22+0x21+0x20 
    5 = 0x23+1x22+0x21+1x20 
    6 = 0x23+1x22+1x21+0x20 
    7 = 0x23+1x22+1x21+1x20 
    8 = 1x23+0x22+0x21+0x20 
    9 = 1x23+0x22+0x21+1x20 

    3)écriture binaire des puissances calculés à la question 1: 
    20=1,(0x23+0x22+0x21+1x20) 
    21=2,( 0x23+0x22+1x21+0x20) 
    22=4,(0x23+1x22+0x21+0x20) 
    23=8,(1x23+0x22+0x21+0x20) 
    24=16 (1x24+0x23+0x22+0x21+0x20) 

    On remarque que l'écriture binaire des chiffres 0 à 9 et l'écriture binaire des puissances calculées à la question 1 sont les mêmes. 


    5) l'écriture décimale des nombres binaires : 11011= 27 soit (2x101+7x100), 
    1100 = 12 soit ((1x101+2x100) , 
    10111 = 23 soit (2x101+3x100), 
    100000 = 32 soit (3x101+2x100) 


    partie B) je sais pas.


  • Bonjour,
    Partie A
    1) 2^0 =1  (  ce symbole ^ est : puissance )
    2^1 =2
    2² =4
    2³ =8
    2^4 =16

    2) écrire les nombres  de 0 à 10 de la base décimale à la base binaire
       base décimale               base binaire
                  0                                   0
                    1                                  1
                    2                                 10
                    3                                 11
                    4                                100
                    5                                101
                    6                                110
                    7                                 111
                    8                                1000
                    9                                 1001

    3) écrire les nombres 2^0; 2^1 ; 2²; 2³; 2^4 à la base binaire
        base décimale                 base binaire
                 2^0                                  0
                  2^1                                10
                  2²                                  100
                  2³                                  1000
                  2^4                                10000
    ainsi de suite 2^5 = 1 suivi de 5 zéro donc 2^5 =100000
    2^6 = 1000000; 2^10= 10000000000
    4)    On va faire un exemple
                   11011 =  1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0
    On a cinq chiffres( 1;1;0;1;1) 11011 donc on 5 sommes 1*2^4; 1*2^3; 0*2^2; 1*2^1; 1*2^0)
    donc 11011= 16+8+0+2+1 = 27.
    Base binaire             explication                                          base décimale
    10000             =1*2^4 +0*2^3+0*2^2+0*2^1+0*2^0                    16
    1100                =1*2^3 +1*2^2 +0*2^1+0*2^0                               12

    Partie B
    1) 16^0 =1
    16^1=1
    16^2 =256
    16^3=4096